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ABSTRACT

Our project follows the from-machine-to-corpus-to-machine workflow outlined in
West et al. (2021) for Symbolic Knowledge Distillation. We explore the design
space and limitations of the student model, including various sizes, architectures,
and data-augmentation methods in order to determine the optimal design for cap-
turing commonsense knowledge. In addition, we train a critic model to automat-
ically score the output of the student model, and to serve as a heuristic for beam
search in order to improve performance without the need for a larger model. The
effectiveness of the proposed method is demonstrated through experimentation
and examples of rejected output sentences.

1 INTRODUCTION

We explore using symbolic knowledge distillation to solve commonsense reasoning tasks with small
student models. A large pre-trained language model contains commonsense, which is knowledge
about the world that all humans know. For example, if “Jack was disappointed to not see Santa
Claus” humans can infer that it is sometime near Christmas. Recent research has employed a new
workflow for symbolic knowledge distillation - the from-machine-to-corpus-to-machine (West et al.,
2021) approach, where commonsense knowledge that is stored implicitly in a large model can be
extracted explicitly to a knowledge graph and further used to train a student model with significantly
fewer parameters. This method is different from traditional knowledge distillation.

However, there are still a lot of issues that need to be addressed. This paper adopted GPT-2 XL model
as the student model and trained with the generated knowledge graph on the ATOMIC20

20 dataset.
While GPT-2 XL has “only” 1.5 billion parameters, which is significantly smaller compared to the
GPT-3 Curie model with 6.7B and GPT-3 Davinci model with 175B parameters, it is still considered
to be ”too large” compared to models used on edge devices like MobileBERT (Sun et al., 2020) with
only 25M parameters. Moreover, for symbolic knowledge distillation, no optimization techniques
of the student model have been evaluated carefully. In other words, the design space of the student
model has not been explored extensively as it is still unknown what structures of student models
would prompt the most effective capture of commonsense.

In this project, we aim to explore the design space and limitations of the student model and find
out the optimal design by experimenting with various sizes and structures of student models (e.g.
GPT2-Large, fine-tuning). We show that the student model can learn common sense from the teacher
model, and the smaller model such as GPT-1 can capture commonsense effectively after fine-tuning
with knowledge graphs. Additionally, fine-tuning using ATOMIC data is an effective technique for
improving the acceptance rate of inference corpora. It is also shown that fine-tuning on machine-
generated ATOMIC data gives a significant improvement in the acceptance rate.

Furthermore, we attempt to use the critic model to automatically score the output sentences, that is,
whether we should accept or reject the inferred sentence without requiring onerous manual labeling.
We also explored the different usages of the critic model by using it as a heuristic for the beam
search to improve the performance of the student model without the requirement of larger models.

2 RELATED WORK

One research stream that is related to our project is called Knowledge Distillation. Knowledge
distillation refers to the process of transferring knowledge from a large model to a small model.
Normally, deploying a large deep neural network is challenging and takes many resources. To tackle
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this problem, knowledge distillation was proposed to transfer the knowledge from a large model
(known as the teacher model) into training a much smaller model (known as the student model)
without any significant loss in performance. This notion was firstly proposed by Hinton et al. (2015),
by using the class probabilities of large models as soft targets. Recent work about Distilled BiLSTM
(Tang et al., 2019) showed that by distilling BERT-large into a single-layer BiLSTM, the number of
parameters was reduced by 100 times, and the speed was increased by 15 times. MiniLM (Wang
et al., 2020b) introduced the role of teaching assistant. When the number of layers and dimensions of
the student model is much smaller, we should first distill out a teaching assistant model with a small
dimension but the same number of layers as the teacher’s model, and then transfer the knowledge
of the teaching assistant to the students. With the TA mechanism, the value relation transfer can
make the student model imitate the teacher model in deep. All these previous work has shown
that we could employ knowledge distillation to train the small-size student model by learning the
knowledge from the larger teacher model, which is the foundation of our project.

Furthermore, it is a very promising and valuable idea to treat a pre-trained language model as an
open, readily available knowledge base. This knowledge base has several advantages over artificially
constructed knowledge bases, including being more flexible, easily accessible, and containing a wide
variety of knowledge. There appears to be a lot of work being done on the Language Models as a
Knowledge Bases paradigm right now. Petroni et al. (2019) proposed the idea of language models
as a knowledge base (LM as KB) and creates a LAMA dataset to assess the model’s capacity to store
knowledge. He explored whether the language model has learned and stored any factual knowledge
(subject-relation-object triad or question-answer pairs) that can be determined by pre-training on
large text corpora. Jiang et al. (2020) suggested two types of methods for building prompts to further
explore the ability of models to extract knowledge. For example, mining candidate prompts from
large text corpus (Wikipedia). Hence, according to the extant work, we have chosen the pre-trained
language model such as GPT-2 as our knowledge base.

The ultimate objective of our project is to address commonsense reasoning tasks with a small-size
student model. Commonsense reasoning refers to a natural language processing (NLP) model’s
ability to capture information that is not explicitly written in the text. Wang et al. (2020a) showed
how to build knowledge maps from pre-trained language models (such as BERT, GPT-2/3) without
manual supervision. Papanikolaou & Pierleoni (2020) employed a method of data enhancement
relation extraction by fine-tuning GPT-2. Chen et al. (2020) used the pre-trained language model
RoBERTA-large to encode the question, and an answer selection awareness mechanism is proposed
to integrate all implicit representations of previous modules. Besides, Moghimifar et al. (2020)
considered the zero-shot sample learning, which used ATOMIC, which is a short text description
containing 300,000 events and an if-then relationship. Large pre-trained language model(like GPT-3
(Brown et al., 2020), GPT-2(Radford et al., 2019)) has been shown to contain implicit commonsense
representations, which can be extracted to build new knowledge graph (Bosselut et al., 2019), by
finetuning through manually constructed CSKG(common sense knowledge graph) seed dataset like
ATOMIC20

20 (Hwang et al., 2021). Therefore, based on the above findings, we have used pre-trained
language models such as GPT-2, the datasets such as ATOMIC20

20, and several techniques such as
fine-tuning to improve the commonsense reasoning performances with student model.

3 APPROACH

Our work is based on previous work of Symbolic Knowledge Distillation (West et al., 2021), in
which the workflow of distilling commonsense knowledge from teacher model to student model
was proposed

Figure 1: Workflow of Symbolic Knowledge Distillation
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However, the authors didn’t do a detailed analysis related to student models. In this project, we
focus on exploring the design space and limitations related to different student model selections. We
also tested the possibility of using a critic model to evaluate whether the generated commonsense
knowledge is correct or not. Based on these, we proposed using the critic model to help the student
model learn better.

3.1 BACKGROUND

In the previously mentioned work, the authors proposed a new workflow for symbolic knowledge
distillation - from-machine-to-corpus-to-machine, where commonsense knowledge that is stored im-
plicitly in a large model can be extracted explicitly to a knowledge graph and further used to train a
student model with significantly fewer parameters. The method is different from traditional knowl-
edge distillation.

Given a dataset that uses events as nodes and relations as edges to build a knowledge graph to
represent commonsense knowledge, the distillation workflow is as follows as figure 1: 1 Query the
teacher model with a list of events that have the same relations in a manually built commonsense
knowledge graph to generate new events. 2. Combine the new events, relations, and responses from
the teacher model to the existing events to build prompts, as the input to the teacher model, in order
to generate new responses to the new events and assemble new events and new responses with their
relations as triplets. 3. Train a critic model to filter out the new triplets with low scores and use the
triplets with high scores to build a much bigger commonsense knowledge graph with higher quality.
4. Train a student model with the new-generated larger commonsense knowledge graph.

3.2 METHOD

In this project, we evaluated how well different small-size student models capture commonsense
knowledge, given different architectural design features such as model sizes, training data for fine-
tuning, architectures, etc.

We generate different variants of GPT models as student models, including differences in size,
pretrained-corpus, and structures. We perform fine-tuning on these models using ATOMIC10x and
ATOMIC20

20 data, as well as augmentation variants of ATOMIC10x. For each student model after fine-
tuning, we generated 500 inference corpora from 500 initially chosen event/relation prompts.

To examine the quality of knowledge in each generated corpus of the student models. We conduct
a human evaluation with assisted code, labeling each inference corpus with one of five labels: ”al-
ways/often”, ”sometimes/likely”, ”farfetched/never”, ”invalid”, and ”too unfamiliar to judge”. Then
we treat ”always/often” and ”sometines/likely” as acceptable, and other options as unacceptable. By
hand-labeling these generated sentences with commonsense, we could compute the acceptance rate
of different models, and make an evaluation based on that.

By finetuning different student models, we would like to answer the following questions:

1. Does the student model learn commonsense through finetuning?
2. Does ATOMIC10x dataset help student models learn more commonsense compared with

ATOMIC20
20?

3. Does pretrained corpus affect student models?
4. What are the results like for student models with a different number of parameters?

To answer Question 1, we compared the acceptance rate of GPT-2 with and without finetuning on the
commonsense dataset. To answer Question 2, we compared the acceptance rate of GPT-2 finetuned
on ATOMIC10x and ATOMIC20

20. To answer Question 3, we compared the acceptance rate of original
GPT-2 and GPT-2 finetuned on ArXiv dataset before. To answer Question 4, we compared the
acceptance rate of GPT-2 model of different sizes, including GPT-2 small, GPT-2 medium, GPT-2
large and distilled GPT-2.

Besides, We tested two types of substitution on the training data: changename and changerela-
tion. Originally, a corpus of ATOMIC10x has a format of using subjects with the names PersonX,
PersonY. For changename augmentation, we change PersonX, PersonY to Alice, Bob,
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respectively. For changerelation, we replace relations with explicit phrases, e.g. HinderedBy →
”is hindered by”. We wanted to explore whether such a change could help student models learn
more commonsense.

We also did experiments related to GPT-1 and GPTNeo, to explore the possible influence of GPT
model design.

3.3 EXTENSIONS

3.3.1 CRITIC MODEL

Although human labeling can help us get the accurate acceptance rate of a model, it is highly time-
consuming, and the results will be influenced by the different scorers. In this project, we would like
to train a critic model, which can help us evaluate the generated sentence, whether it’s acceptable (at
least happen sometimes) or unacceptable (wrong or seldom happens). We used our dataset which
was labeled to evaluate the acceptance rate of student models. We also compared the performance
of different text-classification pre-trained models.

To help the critic model learn more difference between sentences and their connections with ac-
cepted or not. We generated 3000 more sentences using GPT-2, and human-labeled them. We
combine them with previously labeled data to finetune the critic model.

3.3.2 CRITIC MODEL-ASSISTED STUDENT MODEL IMPROVEMENT

As mentioned above, we have manually evaluated the quality of the student models. With thousands
of labeled corpora, we have also trained a critic model as mentioned in West et al. (2021). While we
could follow the original method to use the critic model as a filter to remove the low-quality results
generated by the teacher model, we also use the critic model to improve the quality of the student
model to further unleash its potential.

All of the previously mentioned student models are using a greedy approach to generate texts. Dur-
ing generation, a student model starts with a prompt and then generates the next word based on the
probability distribution of words that it learned during training. It then uses this predicted word as
part of the context for generating the next word, and so on. This process continues until the model
reaches the desired length of text or is stopped by the user. The greedy approach is fast and efficient,
but it can lead to repetitive or nonsensical output if the model’s predictions are not accurate.

We apply a novel approach to improve the performance of the student model without the need to
increase its parameter size or re-training them as Figure 2. To improve the quality of the student
model, we use the critic model to assist the student model during generation and apply beam search
to generate multiple (k) outputs. Beam search is a method for generating multiple outputs from a
language model, such as a GPT model, by considering multiple possible options at each step and
selecting the top-k most likely outcomes. After generating k results, the results are then scored by
the critic model. The critic model then determines which result is more likely to be favored by
humans and returns that result to the user. Using this approach, we have tested the naive GPT2-
medium student model and the critic model-assisted GPT2-medium student model with an unseen
test set of 220 inferences and found that the student model now can generate more coherent and
meaningful inferences.

Figure 2: Critic model assisted student model improvement
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4 EXPERIMENTS

4.1 DATASETS AND EVALUATION

Our project is based on ATOMIC20
20 and ATOMIC10x dataset.

ATOMIC20
20 (Hwang et al., 2021), is a human-authored commonsense knowledge graph. It exhibits

a total of 23 relations, which the original author West et al. (2021) limited to only 7 relations. This
should also be our main interest in using this commonsense knowledge graph for fine-tuning GPT-
2 and obtaining a variety of student models. The 7 relations are xAttr: how X is perceived after
event, xReact: how X reacts in response to event, xEffect: what X does after event, xIntent: X’s
intent in event, xWant: what X wants after event, xNeeded: what X needed for event to take place,
HinderedBy: what X does that might hinder event.

ATOMIC10x is a model-generated commonsense knowledge graph built in West et al. (2021). Firstly,
100 high-quality events are selected from ATOMIC20

20 that avoid grammatical or logical errors and
minimize semantic overlaps. For each generation batch, 10 of these events are randomly sampled.
For each event and each one of the 7 relations above, 10 resulting inferences are generated by Curie
GPT-3 model, which yields 6.46M ATOMIC-style data triples. This is called ATOMIC10x since it
contains more triples than ATOMIC20

20 given the consideration of only 7 relations above.

We cleaned the ATOMIC10x dataset based on the score of sentences, by which we get a dataset of
2512720 lines. We used 500 for the basic test of student models, and 3000 as a test set for training
critic models.

Each element in the training data has the following format: EventA Relation [GEN] EventB. An
example of a corpus is as shown,

PersonX learns to use a PC HinderedBy [GEN] PersonX can’t find a PC.

The way we calculate the acceptance rate for each model is by the formula

Acceptance rate =
#corpus labeled with always/often or sometimes/likely

#all corpora

4.2 MODEL AND TRAINING DETAILS

The models of different structures, checkpoints we used as student models, and critic models are
provided on Hugging Face. To train the model, we used Trainer provided by hugging face and
finetuning the models in batched form. We used the default parameters for the trainer, the optimizer
is AdamW, and the learning rate is 5e-5. For each model with the dataset, we finetune the model on
the whole dataset for one time. For generating sentences, we used the pipeline provided by Hugging
Face. The text generated by basic student models is selected with greedy search, for the critic
model-assisted student model, we used beam search. For finetuning the critic model, we finetuned
the model on a human-labeled dataset for 20 epochs. Most of our training work is done on Google
Colab.

4.3 RESULTS

4.3.1 STUDENT MODELS’ PERFORMANCE

After hand-labeling outcomes of student models, we obtained the resulting acceptance rate (as in
table 1).
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Model Dataset Acceptance rate

GPT-2 (124M) no fine-tuning 4%
GPT-2 (124M) ATOMIC10x 78%
GPT-2 (124M) ATOMIC20

20 57.8%
GPT-2 medium (354M) ATOMIC10x 86%

GPT-2 large (774M) ATOMIC10x 89.3%
GPT-1 ATOMIC10x 85.6%
GPT-2 (124M) ATOMIC10x changename 80.4%
GPT-2 (124M) ATOMIC10x changerelation 84.6%

Table 1: Acceptance rate for 8 different student models obtained from fine-tuning different GPT-2
models and different commonsense knowledge graphs.

4.3.2 CRITIC MODEL’S RESULTS

We finetuned different pretrained text-classification models provided by Hugging-face. The results
are as Tabel 2. We can find the results are close.

Model Accuracy F1-socre Precision Recall

RobeRTa-base 0.84 0.91 0.84 0.99
Bert-base-uncased 0.83 0.91 0.85 0.98
Bert-base-cased 0.83 0.90 0.85 0.96

Table 2: Critic model results

Based on the critic model, we evaluate more student models and get the acceptance rate as table 3.
For this part, the human-labeled result of GPT-2 is based on 3000 human-labeled data, the test set
is different from before. Therefore, the result is different. We also compare the result of human
labeling and critic model on the basic GPT-2 model. But for other models here, the acceptance
rate was got only by the critic model, so we don’t have a human-labeled acceptance rate for these
models.

Model Dataset Acceptance rate (Human) Acceptance rate (Critic)

new GPT-2 (124M) ATOMIC10x 84.3% 86.425%
Distill GPT-2 (82M) ATOMIC10x - 88.425%
ArXiv GPT-2 (124M) ATOMIC10x - 90.675%
GPT-Neo (125M) ATOMIC10x - 91.575%

Table 3: Acceptance rate from critic model for other student models. new GPT-2 is the basic GPT-2
model on another test set, ArXiv GPT-2 is the basic GPT-2 model pretrained on ArXiv dataset.

4.3.3 CRITIC MODEL-ASSISTED STUDENT MODEL

We trained another separate critic model based on the BERT-base-uncased checkpoint. With
the critic model, we build a pipeline where the critic model selects the best text from the candidates
generated by the beam search. For comparison, we used the same GPT2-medium model with exactly
the same pipeline and recorded the outputs from both models. We manually evaluated 220 pairs of
outputs and grouped each pair into three categories: model 1 is better, model 2 is better, or roughly
the same. The result shows that the GPT-2 model is able to generate outputs that are more favorable
to human evaluators. The results are shown in Table 4.
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Counts Acceptance rate

GPT2+Critic is better 158 72%
GPT2 is better 13 6%
Roughly the same 49 22%

Table 4: Acceptance rate for vanilla GPT-2 and critic model-assisted GPT-2.

5 ANALYSIS

5.1 ANALYSIS OF STUDENT MODELS & CRITIC MODELS

According to the results in table 1 and 3, we can answer our questions proposed in section 3.2 about
student models. For question 1, we can find that GPT-2 alone does not capture enough common-
sense knowledge in our task, since without fine-tuning with any commonsense knowledge graphs,
the commonsense inference power is significantly small (4%). For question 2, we can find that
fine-tuning small GPT-2 using human-authored commonsense knowledge graphs is shown to be
less effective than fine-tuning using machine-generated commonsense graphs (57.8% versus 78%),
which means the ATOMIC10x is shown to contain more commonsense knowledge and can help stu-
dent models learn that. For question 3, we found that the GPT-2 pretrained on ArXiv performed
better than the original GPT-2. It seems that pretrained model on commonsense corpus helps it learn
knowledge. For question 4, it seems like in general the bigger the GPT-2 for the original model,
the better the student model after fine-tuning, which indicated the target to minimize the student
model is really hard. Besides, we can find that the results of GPT model with different structures are
different.

Furthermore, we can find that performing augmentation on ATOMIC10x improves the acceptance rate
when training on small GPT-2 (from 78% without any augmentation for ATOMIC10x to 80.4% for
changename augmentation and 84.6% for changerelation augmentation). This might be a pathway
to help student models learn.

For the critic models, we can find that the result is close to human labeling, it may be a way to
evaluate the correctness of commonsense sentences.

5.2 ANALYSIS OF THE PERFORMANCE OF CRITIC MODEL-ASSISTED STUDENT MODEL

In this part, we analyze the outputs generated by both models.

One noticeable difference is the lengths from both outputs. The critic model tends to choose longer
sentences and this is expected since a lot of the manually-labeled rejections are one-word outputs that
do not fit into the context of the preceding event or are essentially meaningless. Longer sentences are
more likely to be coherent and meaningful. For example, the improved GPT-2 generates ”PersonX
is pleased with his money, unlike a lot of people who don’t have enough to pay their bills” for the
event ”PersonX withdraws $800 from the bank” whereas the vanilla model gives ”surprised”. Here
the longer sentence is more meaningful and applies to broader cases.

In many cases, the critic model is able to improve the quality of the generated sentence and appeals
to commonsense knowledge. For example, the improved model generates ”PersonX is happy with
his purchase” for the prompt ”buys CDs at a record store xEffect”, while the vanilla model just gives
”PersonX becomes a musician” which was labeled as rejected by the human evaluators.

However, in some cases, the critic model is not able to improve the quality of the generated sentence.
For example, the improved model gives ”PersonX’s family talks to her HinderedBy [GEN] PersonY
is too busy with school and doesn’t have time for them” while the vanilla model gives ”PersonX’s
family talks to her HinderedBy [GEN] PersonX’s family is afraid to talk to her”. The vanilla model
is able to capture the semantics of the preceding event and the critic model is not able to improve the
quality of the sentence. This is likely due to the fact that the critic model is trained on a relatively
small dataset that is generated by human beings. Besides, the dataset has duplicated entries because
the same inputs are used to compare different student models. This might lead to overfitting of the
critic model.
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5.3 ANALYSIS OF ACCEPTED AND REJECTED SENTENCES

Acceptances fell into two primary categories - ”blanket truths” and ”context-specific”. “Blanket
truths” refer to generating phrases that could be likely for various events. For example, “PersonX
organizes others to work is hindered by [GEN] PersonX is sick”. In this instance, while being sick
would indeed hinder one’s ability to “organize others to work”, the generated phrase “PersonX is
sick ” would hinder almost any event that precedes it. The second category of generated labels we
denote as “context-specific” because the generated event includes some knowledge specific to the
event that precedes it. For example “PersonX moves a towel out of the way, is hindered by [GEN]
PersonX can’t find the towel.” About 20% of acceptances are “Blanket Truths”.

For rejected sentences, the two primary reasons for rejection were grammatical and logical inco-
herence. A large majority of the rejections were due to logical incoherence such as in the phrase,
“PersonX has an urge to run so [GEN] PersonX is seen as pushy.” In a few instances, the generated
phrase was able to partially capture the semantics of the preceding event such as “PersonX flies a
kite so, as a result, [GEN] PersonX wants to be a pilot”. However, in this case, while flying a kite
is somewhat conceptually similar to flying an airplane as a pilot, most people who fly kites do not
necessarily want to be pilots. Overall, 95% of rejections were due to logical incoherence.

The portion of blanket truth sentences is a non-trivial amount (around 20%). This indicates that
while small-size student models have a great commonsense inference power, the resulting genera-
tions are not often meaningful. This might suggest some ”naive” learning pattern of commonsense,
for example, a large proportion of sentences with relation HinderBy are ”blanket truths”, since if
EventA is of the form ”PersonX do something”, then the inference of EventB will be ”PersonX
don’t do that thing”, which makes sense, but it’s trivial. It seems like the models are still on the
side of capturing the semantics of the corpus to perform inference rather than using commonsense
knowledge learned from the teacher model. It is unclear for now if this behavior is less observable
in GPT-2 XL models described in West et al. (2021).

5.4 LIMITATION AND FUTURE WORKS

Our work is limited to the few relations we have in ATOMIC data, which could be generalized
better if we extend to more relations. Further work is needed to obtain a better comparison between
student models. For example, we can better explore the effect of human-authored ATOMIC20

20 versus
the machine-generated ATOMIC10x over fine-tuning GPT-2 models if we train more baseline models
with ATOMIC20

20. Additionally, due to the limitation of our available computing resources, we are
unable to perform a comprehensive hyperparameter search on the critic model to make it performs
better in the hybrid model. We would also expect it to perform better by having a larger manually
labeled dataset that indicates the flavor of human evaluators. Finally, the effect of data augmentation
on ATOMIC10x is limited to only training on small GPT-2, so it would be better if we explore this
using other models.

6 CONCLUSION

We have investigated knowledge distillation from the perspective of student and critic models. Our
work extends how symbolic knowledge distillation works with different small-size student models,
and how well they can learn commonsense from the teacher model. Our results provide a greater
perspective on optimization techniques and architectural designs that would give a well-performed
student model that is less space-costly, which can have many practical impacts on small-scale de-
vices. Our findings further extend from West et al. (2021) how different commonsense knowledge
graphs impact the learning of student models and emphasize the significance of using symbolic
distillation as an alternative to human-authored knowledge distillation.
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