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Introduction and Background
Our brains are continuously processing and responding to an endless stream of visual stimuli,
making it increasingly important to understand how our brains react to different types of
imagery. Through this project, we aimed to investigate how recorded brain activity can be used
to identify the subjective experience of individuals when they view different types of images. By
analyzing these signals, we sought to uncover the neural mechanisms underlying aesthetic
experiences and better understand how our brains process and respond to visual stimuli.
Additionally, we hoped to learn more about the steps of running BCI experiments by conducting
an experiment on our own.

We chose to use electroencephalography (EEG) to record brain activity as it is a commonly used
non-invasive technique that measures the electrical activity of the brain through electrodes
placed on the scalp. This method has been widely used to study the neural correlates of
perception, cognition, and emotion. To collect and analyze EEG data, we utilized the BCI2000
data acquisition software, which is a widely-used platform for neuroscience research. This
software provides many tutorials for setting up EEG experiments, collecting data, and analyzing
results.

Methods

Experiment design

In order to investigate the brain’s reactions to different types of imagery, we decided to conduct
our own EEG experiment using the BCI2000 data acquisition software. Using readily available
tutorials online, we were able to create our own stimulus presentation task. For simplicity sake,
we decided to test the differences between brain responses to pleasant and unpleasant imagery
with the use of the Geneva Affective PicturE Database (GAPED) which is a database of visual
emotion stimuli. The database images are sorted into positive and negative categories. Positive
categories included mainly images of human and animal babies as well as nature sceneries. The
negative categories included images of spiders, snakes, and scenes of inhumane conditions for
humans and animals (Fig 1).



Figure 1: Positive and Negative Image Stimuli

To create our stimulus presentation task, we selected ten images of each category and used a
MATLAB script provided in the BCI2000 documentation to generate a parameters file that could
be used by the software to sync stimulus presentation with EEG signal recording. Once the
parameters file was created, we moved on to conducting our experiment by following a similar
model to the steps outlined in the P300 BCI User Tutorial. We conducted two full trials, one for
each partner. After placing the EEG cap on the subject, we created connections between the
electrodes and scalp with the use of conductive gel and ensured all impedances were below
30kOhms to reduce noise in the signal (Fig 2).

Figure 2: Electroconductive gel can improve noisy signals by decreasing the impedance
between the electrode and scalp.

To test that the EEG signals were being read correctly, we attempted to create muscle artifacts
through eye movement and muscle clenching. The distortion of the signal in time with these



actions indicated that the electrodes were an indication that electrodes were taking correct
measurements (Fig 3).

Figure 3: A difference between calm brain signals (left) and brain signals with muscle artifacts
(right) indicates that the EEG data is being correctly reported.

Once the functionality of the system was confirmed, the stimulus presentation task was run. The
images were presented in a random order for two seconds at a time with a brief pause between
images. A 256 Hz sample rate was used resulting in 512 data points per channel for each stimuli.
Each subject conducted five trials with small breaks in between and collected approximately 400
responses per subject (383 for Yuchen and 391 for Sophie). Data was collected from the first 16
electrodes labeled on the map in Figure 4 and exported to a file for further analysis.

Figure 4: The output of each electrode during a trial of the stimulus presentation task (left) and
map of electrode placements (right). The displayed outputs correspond to electrodes 1 through 8

but data was collected from electrodes 9-16 as well.



Constructing Models

The second task was to use the collected data in order to create a classifier to detect whether the
recipient was viewing a pleasant or unpleasant image stimuli. Because the collected data was
sequence data, we used sequence neural network models like RNN, GRU, LSTM to build the
classifier, and train and test the models on each recipient.

RNN[1]

Recurrent Neural Networks (RNNs) are a class of artificial neural networks specifically designed
for processing sequential data. They are characterized by their ability to maintain an internal
state or "memory" of past inputs, enabling them to capture temporal dependencies within the
data. RNNs have been widely used in various applications such as natural language processing,
speech recognition, and time-series forecasting. However, despite their effectiveness in modeling
sequential data, RNNs can suffer from vanishing and exploding gradient problems, limiting their
capacity to learn long-range dependencies.

GRU[2]

Gated Recurrent Units (GRUs) are a type of recurrent neural network architecture that addresses
some of the limitations of traditional RNNs. GRUs incorporate gating mechanisms that control
the flow of information within the network. These mechanisms allow the model to selectively
remember or forget information, improving its ability to capture long-range dependencies and
mitigating the vanishing gradient problem.

LSTM[3]

Long Short-Term Memory (LSTM) networks are a popular type of recurrent neural network
designed to address the shortcomings of traditional RNNs. LSTMs feature a unique cell structure
that incorporates input, output, and forget gates, which allow the model to selectively store and
retrieve information over long time periods. This design effectively mitigates the vanishing
gradient problem and enables the network to learn long-range dependencies more efficiently.
Due to their robust performance, LSTMs have been widely employed in time-series prediction.

BiLSTM[4]

Bidirectional Long Short-Term Memory (BiLSTM) networks are an extension of the LSTM
architecture that allows for the efficient processing of sequential data in both forward and
backward directions. By maintaining two separate LSTM layers—one processing the input
sequence in its original order and the other in reverse—BiLSTMs are able to capture complex
dependencies and contextual information from both past and future time steps. This bidirectional



approach has been demonstrated to improve the performance of various sequence-to-sequence
tasks, including machine translation, named entity recognition, and sentiment analysis, by
providing a more comprehensive understanding of the input data.

Model Design
In this project, our aim was to assess the ability of deep learning models, using a basic set of
parameters and minimal parameter selection. We utilized a sequence model to process the input
and mapped all output to a linear layer to generate a single output indicating whether the text was
pleasant or unpleasant. For optimization, we selected Adam, and trained the model for 10
epochs.

To test the performance of our model, we split the data for each recipient into a training
set, which comprised 80% of the data, and a test set, which comprised 20% of the data. This
allowed us to evaluate the model's ability to generalize to new, unseen data.

Results

Figure 5: Average wave data of Sophie & Yuchen when watching the stimuli

In order to gain a sense of the data, the average responses to the pleasant and unpleasant
stimuli were displayed for each individual participant. Comparing the average responses, it is
clear that there is much difference in each person's response. Yuchen’s responses to different
stimuli types vary significantly more than Sophie’s.



For Sophie (Figure 6), the average pleasant and unpleasant image responses are very
similar. Only channel 8 (electrode T8) shows perceptible differences. This made classification a
bit more inaccurate for the machine learning models. For the data of Yuchen (Figure 7), the
responses are perceptibly different for most of the channels. This significant variation between
test subjects may be attributed to the variation in the way their brains process information.

Figure 6: Average EEG response of Sophie (Pleasant vs Unpleasant)

Figure 7: Average EEG response of Yuchen (Pleasant vs Unpleasant)



Classification Results
Using the data in conjunction with the models outlined in the Methods section resulted in

the classifications results shown in Table 1. For Sophie’s data, RNN model reached the highest
accuracy of 62% along with F1 score being 0.62. For Yuchen’s data, LSTM played well,
achieved 74% accuracy along with 0.74 F1 score. The higher accuracy of Yuchen’s classifier
compared with Sophie’s may be connected to the more easily perceptible differences in Yuchen’s
responses to the different stimuli categories.

Other differences in models can be seen in the conduction matices of Figure 8. For Sophie’s data,
pleasant stimuli are harder to differentiate, and the models performed well on the unpleasant data. For
Yuchen’s data, models generally miscategorised the unpleasant stimuli.

Subject Model Accuracy Recall Precision F1-score

Sophie

RNN 62.03% 0.62 0.62 0.62

GRU 54.43% 0.54 0.54 0.54

LSTM 51.9% 0.51 0.51 0.51

BiLSTM 54.43% 0.54 0.54 0.54

Yuchen

RNN 64.94% 0.64 0.64 0.64

GRU 71.43% 0.72 0.70 0.71

LSTM 74.03% 0.74 0.74 0.74

BiLSTM 70.13% 0.71 0.69 0.70

Table 1: Classification results regarding models and recipients



Figure 8: Confusion Matrix for all models

Discussion
An analysis of the EEG data shows that responses to positive and negative visual stimuli depends
greatly on the individual participant. For Sophie, there was very little difference in the brain
response to pleasant and unpleasant imagery, but Yuchen’s responses displayed more variation.
This allowed for a more accurate classification model for Yuchen’s data.

What remained consistent, however, was the general shape of the output waveform; for each
image, a peak in the data would occur shortly after the initial presentation of the stimulus. This
provides evidence to confirm the idea of the P300 potential which refers to a spike in activity
approximately 300ms following the presentation of the target stimulus. Additionally, the ability
of the classifier to surpass the baseline accuracy of 50% (probability of picking correctly from
two options) for both participants indicates that pleasant and negative imagery is processed
differently in the brain.

Although this experiment provided an excellent introduction to the steps involved in conducting
an EEG experiment, there are many directions for future work. Because response varied so
significantly between two subjects, a greater number of test subjects is necessary. Additionally,
pleasant and unpleasant imagery is very subjective. What one participant finds pleasing may not
necessarily appeal to another participant. In the future, it may be beneficial to have a greater
number and variety of images to ensure positive and negative responses are actually elicited from
the participant. Furthermore, fatigue was a large issue in test subjects. By having shorter trials
and frequent breaks, fatigue from image viewing could be greatly reduced and this may elicit
more useful responses from participants.
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